SOME PROPERTIES OF VECTOR SPACES

(1) 0_{V} is unique and the addition inverse $-u$ is unique for each $u \in V$.
(2) $0 \odot u=0_{V}$.
(3) $c \odot 0_{V}=0_{V}$.
(4) $c \odot u=0_{V}$, then either $c=0$ or $u=0_{V}$.
(5) $(-1) \odot u=-u$.

I will provide the proofs for (1) and (5).
Proof. (1) Assume there are zero vectors 0_{V} and $\tilde{0}_{V}$, then by condition (3) in the definition of vector spaces:

$$
0_{V}+\tilde{0}_{V}=\tilde{0}_{V} .
$$

However $\tilde{0}_{V}$ is also a zero vector, so

$$
0_{V}+\tilde{0}_{V}=0_{V}=\tilde{0}_{V} .
$$

So the zero vector is unique. The proof for the second part is essentially the same.
(5) By conditions (6) and (8) in the definition of vector spaces:

$$
(-1) \odot u \oplus u=(-1) \odot u \oplus(1 \odot u)=(-1+1) \odot u=0 \odot u=0_{V} .
$$

The last equality follows from (2). Since by (1) the addition inverse of u is unique, we infer that $(-1) \odot u=-u$.

